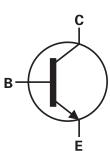
45V NPN MEDIUM POWER HIGH GAIN TRANSISTOR IN D-PAK

SUMMARY

 $\mbox{BV}_{\mbox{CEO}}$ = 45V : $\mbox{R}_{\mbox{SAT}}$ = 77m $\Omega;$ $\mbox{I}_{\mbox{C}}$ = 3A

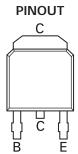
DESCRIPTION

Packaged in the D-Pak outline this high gain 45V NPN transistor offers low on state losses making it ideal for use in DC-DC circuits and various driving and power management functions.


DPAK

FEATURES

- 3 Amps continuous current
- Up to 6 Amps peak current
- Low saturation voltages
- High gain


APPLICATIONS

- DC DC Converters
- MOSFET gate drivers
- · Charging circuits
- Power switches
- Siren drivers

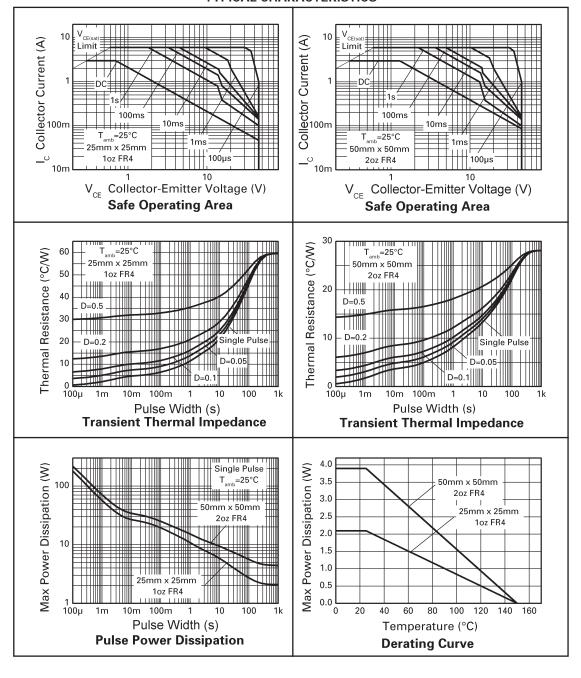
ORDERING INFORMATION

DEVICE	REEL SIZE	TAPE WIDTH	QUANTITY PER REEL
ZXT690BKTC	13"	16mm embossed	2500 units

DEVICE MARKING

ZXT690B

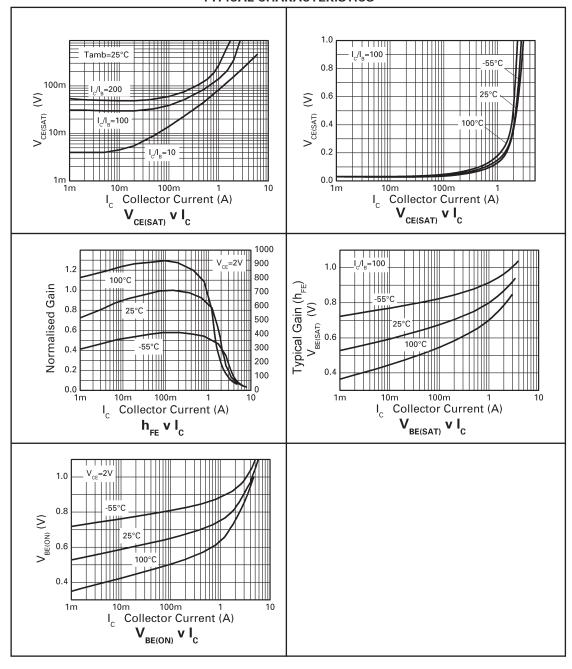
ABSOLUTE MAXIMUM RATINGS


PARAMETER	SYMBOL	LIMIT	UNIT
Collector-Base Voltage	BV _{CBO}	60	V
Collector-Emitter Voltage	BV _{CEO}	45	V
Emitter-Base Voltage	BV _{EBO}	5	V
Continuous Collector Current	I _C	3	Α
Peak Pulse Current	I _{CM}	6	Α
Base Current	I _B	0.5	Α
Power Dissipation at T _A =25°C ^(a)	P _D	2.1	W
Linear Derating Factor		16.8	mW/°C
Thermal Resistance Junction to Ambient		59	°C/W
Power Dissipation at T _A =25°C ^(b)	P _D	3.0	W
Linear Derating Factor		24.4	mW/°C
Thermal Resistance Junction to Ambient		41	°C/W
Power Dissipation at T _A =25°C (c)	P _D	3.9	W
Linear Derating Factor		30.9	mW/°C
Thermal Resistance Junction to Ambient		32	°C/W
Operating and Storage Temperature Range	T _j , T _{stg}	-55 to +150	°C

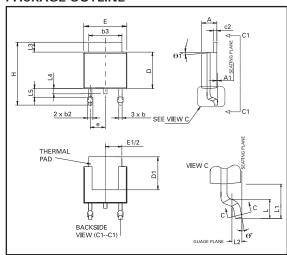
NOTES

- (a) For a device surface mounted on 25mm x 25mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions.
- (b) For a device surface mounted on 50mm x 50mm FR4 PCB with high coverage of single sided 1oz copper in still air conditions.
- (c) For a device surface mounted on 50mm x 50mm FR4 PCB with high coverage of single sided 2oz copper in still air conditions.

TYPICAL CHARACTERISTICS


ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise stated)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Collector-Base Breakdown Voltage	BV _{CBO}	60	145		V	I _C = 100μA
Collector-Emitter Breakdown Voltage	BV _{CEO}	45	65		V	I _C = 10mA ⁽¹⁾
Emitter-Base Breakdown Voltage	BV _{EBO}	5	8.2		V	I _E = 100μA
Collector Cut-Off Current	I _{CBO}		<1	20	nA	V _{CB} = 35V
Collector Cut-Off Current	I _{CES}		<1	20	nA	V _{CB} = 35V
Emitter Cut-Off Current	I _{EBO}		<1	20	nA	V _{EB} = 4V
Collector-Emitter Saturation Voltage	V _{CE(SAT)}		50	85	mV	$I_C = 0.1A, I_B = 0.5 \text{mA}^{(1)}$
			240	360	mV	$I_C = 1A, I_B = 5mA^{(1)}$
			210	320	mV	$I_C = 2A$, $I_B = 40mA^{(1)}$
			230	350	mV	I _C = 3A, I _B = 150mA
Base-Emitter Saturation Voltage	V _{BE(SAT)}		1.0	1.2	mV	$I_C = 3A, I_B = 150 \text{mA}^{(1)}$
Base-Emitter Turn-On Voltage	V _{BE(ON)}		0.9	1.1	mV	$I_C = 3A, V_{CE} = 2V^{(1)}$
Static Forward Current Transfer Ratio	h _{FE}	500				$I_C = 100 \text{mA}, V_{CE} = 2V^{(1)}$
		400				$I_C = 1A, V_{CE} = 2V^{(1)}$
		150				$I_C = 2A, V_{CE} = 2V^{(1)}$
		60				$I_C = 3A, V_{CE} = 2V^{(1)}$
Transition Frequency	f _T	150			MHz	I _C = 50mA, V _{CE} = 5V
						f = 50MHz
Output Capacitance	СОВО		16		pF	V _{CB} = 10V, f = 1MHz ⁽¹⁾
Switching Times	t _{ON}		33		ns	$I_C = 500 \text{mA}, V_{CC} = 10 \text{V},$
	t _{OFF}		1300		ns	$I_{B1} = I_{B2} = 50 \text{mA}$



NOTES (1) Measured under pulsed conditions. Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

TYPICAL CHARACTERISTICS

PACKAGE OUTLINE

Controlling dimensions are in millimetres. Approximate conversions are given in inches

DIM	MILLIMETRES		INCHES		
	MIN	MAX	MIN	MAX	
Α	2.18	2.38	0.086	0.094	
A1	_	0.127	_	0.005	
b	0.635	0.89	0.025	0.035	
b2	0.762	1.114	0.030	0.045	
b3	5.20	5.46	0.205	0.215	
С	0.457	0.609	0.018	0.024	
c2	0.457	0.584	0.018	0.023	
D	5.97	6.22	0.235	0.245	
D1	5.20	_	0.205	_	
E	6.35	6.73	0.250	0.265	
E1	4.32	_	0.170	_	
е	2.30 BSC		0.090 BSC		
Н	9.40	10.41	0.370	0.410	
L	1.40	1.78	0.055	0.070	
L1	2.74	REF	0.108 REF		
L2	0.051 BSC		0.020 BSC		
L3	0.89	1.27	0.035	0.050	
L4	0.635	1.01	0.025	0.040	
L5	1.14	1.52	0.045	0.060	
θ1°	0°	10°	0°	10°	
θ°	0°	15°	0°	15°	

© Zetex plc 2003

Europe		Americas	Asia Pacific
Zetex plc	Zetex GmbH	Zetex Inc	Zetex (Asia) Ltd
Fields New Road	Streitfeldstraße 19	700 Veterans Memorial Hwy	3701-04 Metroplaza Tower 1
Chadderton	D-81673 München	Hauppauge, NY 11788	Hing Fong Road
Oldham, OL9 8NP			Kwai Fong
United Kingdom	Germany	USA	Hong Kong
Telephone (44) 161 622 4444	Telefon: (49) 89 45 49 49 0	Telephone: (1) 631 360 2222	Telephone: (852) 26100 611
Fax: (44) 161 622 4446	Fax: (49) 89 45 49 49 49	Fax: (1) 631 360 8222	Fax: (852) 24250 494
hg@zetex.com	europe.sales@zetex.com	usa.sales@zetex.com	asia.sales@zetex.com

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to www.zetex.com

